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Experimental studies have shown that the Pb monolayer that segregates in the PbGa alloy liquid-vapor
interface forms a two-dimensional hexagonal crystal that melts at 341 K, and it has been speculated that the
disordered phase formed is hexatic. This paper reports the results of simulation studies of the in-plane structure
of the outermost stratum of the liquid-vapor interface of a dilute Pb in Ga alloy. These simulations are based
on four major improvements to a previous study. First, the simulation studies involve considerably more atoms
and considerably longer equilibration runs than considered in the previous work of Chekmarev, Oxtoby, and
Rice. Second, a more accurate nonlocal pseudopotential representation of the interactions in the system is used.
Third, the amplitude of the out-of-plane motion of the Pb atoms is constructed to have the observed value.
Fourth, an approximation to the role of the liquid Ga substrate is provided by adding a layer of Ga atoms to the
layer of Pb atoms. The results of our simulation studies show that the Ga layer adjacent to the Pb layer has a
profound influence on that layer’s properties. In particular, it is shown that in the two-layer PbGa system the
Pb layer forms, at low temperature, a stable two-dimensional crystal on top of liquid Ga. This two-dimensional
crystal melts at a temperature close to that found experimentally. It is found that the crystalline Pb layer is
transformed to the liquid state via two intermediate hexatic phases that differ in the magnitude of the bond
orientation order. Each of the phase transitions along this melting pathway is first order. The temperature range
over which each hexatic phase is stable is small. The profound influence of out-of-plane motion is demon-
strated by a comparison of the results of simulations of a quasi-two-dimensional �Q2D� and of a strictly
two-dimensional monolayer of Pb. The melting transition in the Q2D one-layer system is first order, directly to
the liquid, with no intervention of a hexatic phase. The melting transition in the strictly 2D system involves two
stages: a first-order transition to an intermediate hexatic phase followed by melting of the hexatic to a liquid
phase. The latter transition is continuous over a small temperature range. An examination of the role of defects
in the melting process reveals a picture rather different from that postulated in the Kosterlitz-Thouless-
Halperin-Nelson-Young theory of 2D melting.
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I. INTRODUCTION

Recent experimental studies of the structure of the liquid-
vapor interface of a dilute Pb in Ga alloy reveal, as expected,
that the excess Pb in the interface is present as a monolayer
that forms its outermost stratum �1�. Since the Pb monolayer
has a nonzero amplitude of motion perpendicular to the in-
terface, we characterize it as quasi two dimensional �Q2D�.
These experiments also reveal, unexpectedly, that when the
temperature is below 341 K the Pb monolayer is in a Q2D
hexagonal crystalline phase and that at 341 K it undergoes a
transition, with either very small or zero density change, to a
disordered phase. The correlation length obtained from the
width of the �1,1� diffraction peak of the Q2D crystalline
phase drops almost discontinuously at 341 K to a value
rather larger than is typical of liquids. It then further de-
creases continuously until about 363 K, thereafter becoming
constant. These data suggest the existence of a disordered
phase in the temperature range 341–363 K, intermediate be-
tween the crystal phase and the liquid phase. The experimen-
tal data fall short of providing unambiguous evidence for the
existence and character of this intermediate disordered phase,
but it has been speculated that it has a hexatic structure. The
disordered phase that is stable above 363 K is a Q2D liquid.
Second-harmonic generation studies of the liquid-vapor in-
terface of PbGa alloys have been interpreted to confirm the
crystallization of a monolayer of Pb in the liquid-vapor in-

terface, albeit at a temperature slightly different
�357–362 K� from that found in the grazing-incidence x-ray
diffraction studies. Elsewhere we have argued that the
second-harmonic generation studies identify the liquid-to-
hexatic transition �2�.

Information about the atomic distribution in the liquid-
vapor interface of a dilute Pb in Ga alloy has also been
obtained from self-consistent quantum Monte Carlo simula-
tions �3�. The sample is constructed with enough layers of
atoms that in its interior the properties of the bulk liquid are
correctly reproduced. The results of the studies of a 1000-
atom sample of a dilute Pb in Ga alloy, arranged in 14 layers
with two liquid-vapor interfaces, reported by Zhao and Rice
�3�, accurately describe the longitudinal �along the normal to
the interface� density distributions of the Pb and Ga atoms,
but they do not describe correctly the in-plane distribution of
the atoms in the Pb monolayer. This failure is plausibly at-
tributable to the inadequate size of the interface �about 70
atoms� in the simulation sample used. The surface area of the
Zhao-Rice simulation �3� sample is adequate for character-
ization of the short-ranged in-plane structure of a liquid, but
not the long-ranged in-plane structure of a solid.

In the limiting case when the monolayer-substrate inter-
action is very weak it is plausible to analyze the properties of
the segregated species in the outermost layer of the liquid-
vapor interface as if isolated from the substrate alloy. The
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calculations of Zhao and Rice �3� show that the Pb-Pb inter-
action is much stronger than the Ga-Ga and Pb-Ga interac-
tions, which led Chekmarev, Oxtoby, and Rice �COR� �4� to
study the properties of a Q2D sheet of Pb atoms. The results
of their calculations reproduce qualitatively all of the major
features of the Pb-in-Ga system observed experimentally.
These simulations also predict the existence of a hexatic
phase, stable over a very small range of temperature, be-
tween the Q2D crystal and Q2D liquid phases. However, the
size of the simulation sample used in the COR calculations
was only 2000 atoms, which is not large enough to guarantee
that finite-size effects did not influence the findings, specifi-
cally whether the hexatic phase is an artifact of system size
or will persist in the thermodynamic limit. Moreover, those
calculations used a rather simple local pseudopotential and a
crude constraint on the out-of-plane motion of the Pb atoms.
A consequence of the choice of pseudopotential and out-of-
plane potentials is that the temperature scale of the phase
diagram is shifted up considerably; COR predict the melting
point of the ordered quasi-two-dimensional solid to be of the
order of 1300 K. As the simulations reported in this paper
show, the melting point of the Pb monolayer depends sensi-
tively on the magnitude of the out-of-plane motion of the Pb
atoms. The use of experimental data to determine the mag-
nitude of the out-of-plane motion removes the gross discrep-
ancy in the magnitude of the transition temperature pre-
dicted. The simulations reported in this paper also show that
the Ga layer adjacent to the Pb layer has a profound influ-
ence on that layer’s properties, including the existence or
nonexistence of a hexatic phase. As will be seen, our results
require a reinterpretation of the results of Chekmarev, Ox-
toby, and Rice.

This paper reports the results of simulation studies of the
in-plane structure of the outermost stratum of the liquid-
vapor interface of a dilute Pb in Ga alloy. These calculations
examine model systems that have four major improvements
relative to the model used in the COR simulations. First, the
simulations reported in this paper involve considerably more
atoms and considerably longer equilibration runs than con-
sidered by Chekmarev, Oxtoby, and Rice �4�. Second, a more
accurate pseudopotential representation of the interactions in
the system is used. Third, the amplitude of the out-of-plane
motion is constructed to have the observed value �taken from
the fit to the x-ray reflectivity data for the PbGa alloy�.
Fourth, instead of neglecting the influence of the substrate
Ga on the properties of the Pb monolayer, an approximation
to the role of the liquid Ga substrate is provided by adding a
layer of Ga atoms to the layer of Pb atoms. As already men-
tioned, the results of our simulation studies show that the Ga
layer adjacent to the Pb layer has a profound influence on
that layer’s properties. In particular, it is shown that a mono-
layer of Pb that has atomic out-of-plane motion with ampli-
tude equal to the observed value forms a two-dimensional
crystal that melts to a liquid via a first-order transition; this
model does not support a hexatic phase intermediate between
the crystal and liquid phases. On the other hand, it is found
that in the model two-layer PbGa system the Pb layer forms,
at low temperature, a stable two-dimensional crystal on top
of liquid Ga that melts to a hexatic phase via a first-order
transition and then, at a higher temperature, via another first-

order transition, to another hexatic phase, before finally
transforming to a liquid. The crystal-to-hexatic transition
temperature is close to that found experimentally. The tem-
perature range over which each of the hexatic phases is
stable is small. We will report later the results of simulation
studies of a three-layer PbGaGa system; the preliminary re-
sults from those calculations support the conclusion that
while the influence of the layer of Ga adjacent to the Pb layer
on its properties is very great, that of the second Ga layer on
the properties of the Pb layer is very small.

II. BACKGROUND INFORMATION

A. Pseudopotential

The pseudopotential theory of the liquid-vapor interface
of a metal has been described in Refs. �3–5�, to which the
reader is referred for details. We mention here only those
details concerning the pseudopotential required for compre-
hension of the character of the calculations carried out. The
pseudopotential Hamiltonian has the form

H = �
i=1

N
pi

2

2mi
+ �

i=1

N

�
j�i

N

�ef f��Ri − R j�;ne�r�� + U0��0�r�,ne�r�� ,

�1�

where pi is the momentum of the ith atom with mass mi,
�ef f��Ri−R j� ;ne�r�� is the effective pair potential between
atom i and atom j, �Ri−R j� is the distance between atom i
and atom j, and �0�r� and ne�r� are reference jellium and
electron densities. The functional U0��0�r� ,ne�r�� is a
structure-independent contribution to the energy that is, how-
ever, dependent on the electron and jellium densities. The
specific form of this functional that we have used is de-
scribed in the paper by Zhao and Rice �3�; that paper reports
the results of self-consistent Monte Carlo simulations of the
density distribution along the normal in the interface of a
dilute Pb in Ga alloy �3�.

For the calculations reported in this paper, following the
work of Zhao and Rice �3�, we employed the nonlocal
energy-independent model electron-ion pseudopotential pro-
posed by Woo, Wang, and Matsuura �6,7�. It has the form

V̂PS
ion�r� = �

l

�V̄l�r� + �V1l�r� − V̄l�r���R1l�	R1l�
�l�	l� , �2�

where V̄l�r� is a pseudopotential average over all states other
than the first valence state for a given angular momentum
quantum number l, �R1l� is the radial part of the wave func-
tion for the state, and �l�	l� is a projection onto the state with
angular momentum quantum number l. With these defini-
tions the model pseudopotential takes the form

V1l�r� = �− B1l +
Zl

r
, r � Rl,

−
Z

r
, r � Rl,� �3�

where Bl, Zl, and Rl are parameters that are usually deter-
mined by a pseudoeigenfunction expansion and perturbation

DONG XU LI AND STUART A. RICE PHYSICAL REVIEW E 72, 041506 �2005�

041506-2



theory. Z is the valence of the ion. The averaged pseudopo-

tential V̄l is calculated in the same fashion as is V1l except for

replacing the parameter B1l with B̄l. Further details concern-
ing the calculation of the electron-ion pseudopotential can be
found in the report by Zhao and Rice �3�.

The ion-ion pair potential used in the calculations re-
ported below was calculated for a homogeneous metal with
the density of the quasi-two-dimensional layer. In a homoge-
neous liquid metal with valence electron density the ion-ion
pair interaction is �3,8,9�

��Rij� =
zi

*zj
*

Rij
1 −

1

�
�

0

�

�Fij�q� + Fji�q��
sin�qR�

q
dq�

+ �BM�Rij� + �vW�Rij� . �4�

The first term in Eq. �4� is due to the direct Coulomb repul-
sion between ions with effective valence charges zi

* and zj
*,

with zi
*zj

*=ZiZj − Z̄iZ̄j where Z is the true valence charge and

Z̄ is the depletion hole charge that originates from the or-
thogonality condition between the valence and core electron
wave functions. The second term is an indirect interaction
mediated by the conduction electrons, the so-called band
structure energy. This contribution to the energy tends to
offset the effect of the strong Coulomb repulsion and thus
lowers the energy of the system. �BM�Rij� is the Born-Mayer
core-core repulsion interaction �10�, and �vW�Rij� is the van
der Waals polarization interaction between the ion cores �9�.
In general, the latter two contributions to the energy are
much smaller than the other contributions to the energy of
the liquid metal. Finally, F�q� is the normalized energy-wave
number characteristic function. We have used the form of
this function derived by Shaw �8� �also see the paper by
Zhao et al. �5��. The calculated effective interionic potentials
are shown in Fig. 1.

B. Computational details

A simulation sample with an adequate number of atoms
per stratum to support long-ranged in-plane crystalline order
and with sufficient depth to accurately represent the bulk

liquid is too large for the computational resources available
to us. We have compromised by using the available experi-
mental information to design a simulation sample that will
permit an accurate representation of what we believe to be
the most important characteristics of the liquid-vapor inter-
face of a dilute PbGa alloy. Specifically, we have accepted
that the density distribution along the normal is stratified and
that the outermost stratum is a monolayer of Pb. Conse-
quently, we have constructed our simulation samples to have
a large number of atoms per layer and just enough layers to
adequately represent the influence of the Ga on the Pb layer.
Taking advantage of the stratification of the liquid-vapor in-
terface we have restricted the Pb and Ga atoms to their re-
spective layers. We have studied four model systems: a Q2D
monolayer of Pb atoms, a strictly 2D monolayer of Pb atoms
�using the original COR potential �4� and the nonlocal
pseudopotential described in the last section�, and a two-
layer system consisting of a monolayer of Pb atoms atop a
monolayer of Ga atoms. Systems of different size were ex-
amined, some with about 5000 atoms. The unadorned Q2D
Pb monolayer model was studied to provide a connection
between the current studies and those reported by Chek-
marev, Oxtoby, and Rice �4�; the strictly 2D models were
studied to determine the limiting behavior of the Pb mono-
layer in the absence of out-of-plane motion, specifically the
influence of out-of-plane motion on the range of stability of
the hexatic phase.

For the simulations of the Q2D Pb monolayer, 2016 Pb
atoms were placed in a rectangular box in the xy plane; the
ratio of the lengths of the sides of the box was 7/4�3. We
chose this geometry to accommodate a perfect two-
dimensional hexagonal crystal, while keeping the box shape
nearly square. The box area is fixed at the value for which
the 2D density of the atoms equals the observed density of
Pb atoms—namely, 9.87 nm−2. The Pb atoms are permitted
to move perpendicular to the xy plane, with the motion in the
z direction constrained by an external harmonic potential.
The strength of the harmonic potential was chosen so that the
average layer thickness is the same �within the experimental
uncertainty� as that observed. Periodic boundary conditions
were applied in both the x and y directions, but not in the z
direction.

The 2D simulations were carried out for a sample contain-
ing 10 044 Pb atoms. The initial configuration was taken to
be a perfect hexagonal lattice in a box with side lengths in
the ratio 93/54�3. Our simulations of the two-layer GaPb
system had 2016 Pb atoms in one layer and 2804 Ga atoms
in the other layer, for a total of 4820 atoms. The number of
Ga atoms in the simulation box was chosen to reproduce the
density of the Ga layer immediately below the Pb monolayer
in the stratified liquid-vapor interface of the alloy. That den-
sity is 13.7 nm−2; it was determined from the observed ratio
of densities of the Pb monolayer and the adjacent Ga layer.
To accommodate a perfect 2D crystal, the simulation box in
the xy plane had sides with lengths in the ratio 7/4�3. The
Pb atoms and the Ga atoms were constrained to remain in
their respective layers by two different harmonic potentials
in the z direction. The distance between the centers of these
two harmonic potentials was set equal to the sum of the
effective atomic radii of the Pb and Ga atoms.

FIG. 1. The effective interion potentials for a Ga:Pb alloy.
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We have carried out both NVT and NpT simulations, the
former motivated by the suggestion, from the experimental
data, that there is only a very small or possibly zero-density
change in the quasi-2D phase transition. The latter simula-
tions were undertaken to examine the accuracy of this sug-
gestion. The results of the NpT simulations do show that the
density change across the transition is very small, possibly
zero in an infinite sample, and the fluctuations in the imme-
diate vicinity of the transition temperature are reduced from
those observed in the NVT simulations, thereby permitting a
more accurate determination of the temperature dependence
of the order parameters.

The starting configuration for our NVT ensemble simula-
tions of the isolated Pb layer was perfect 2D hexagonal pack-
ing. For the two-layer system the starting configuration of
the Pb atoms also was perfect 2D hexagonal packing. How-
ever, because our simulation box is not designed to hold a
perfect 2D Ga crystal, the starting configuration for the Ga
atoms was random 2D packing subject to the constraint of no
atom-atom overlap. In both systems, the initial positions of
the atoms in the z direction were at the minima of the respec-
tive constraining harmonic potentials �the mean positions of
the layers�. Since the experimental data suggest that there is
zero or a very small change in the density of the Pb mono-
layer across the transition, all two-dimensional particle den-
sities were fixed throughout the NVT simulations.

In the NpT ensemble simulations of the Pb monolayer the
surface pressure was fixed at 2.100 N/m for the 2D system
and 1.464 N/m for the Q2D system; for the PbGa bilayer, it
was fixed at 2.786 N/m. These values of the surface pressure
were chosen to keep the surface density close to the value
fixed in the NVT ensemble simulations when the temperature
is close to the transition point of the Pb monolayer. The area
of the simulation box was allowed to fluctuate by altering
one or the other of its side lengths randomly.

In all of our simulations at least several millions of Monte
Carlo steps were taken to equilibrate the system, and physi-
cal properties were calculated every 2048 Monte Carlo steps
thereafter. In our notation, one Monte Carlo step involves the
displacement of every particle in the system once. The
achievement of equilibrium was monitored by the average
values of physical parameters, such as the energy. The simu-
lations were continued until these average values were con-
stant within their fluctuation ranges. In the two-layer simu-
lations the convergence is slow near the transition
temperature. In that case we used at least 1	107 Monte
Carlo steps to reach the equilibrium state, and physical prop-
erties were calculated every 2048 Monte Carlo steps there-
after for 4	106 steps.

To monitor the structural change occurring in the melting
process, we elected to work with two sets of order param-
eters, which are defined in a similar way as in the paper by
Chekmarev et al. �4�. One set consists of the global bond-
orientation and global translational order parameters, de-
noted GOOP and GTOP, respectively. These quantities pro-
vide information on the overall character of the melting
process.

Adhering to the widely used convention, for each particle
we define


6i =
1

ni
�

j

ni

exp�i6��Rij�� , �5�

in which ni is the number of nearest neighbors �NN� of the
ith particle and �ij designates the angle between the imagi-
nary bond Rij connecting particles i and j and an arbitrary
axis x. The NN list was compiled for each atom in a chosen
configuration from the associated Voronoi polygon mapping
of that configuration �11�.

For a perfect 2D hexagonal solid, �
6i�2=1. In contrast, for
a disordered system the peak of the distribution of �
6i�2 is
shifted toward smaller values �ultimately zero�, thereby sig-
naling the loss of the bond orientation symmetry in the first
neighbor shell of an atom.

The GOOP is defined by �12,13�

�6 =
1

N
��

i=1

N


6i� , �6�

where the summation extends over all N atoms in the box.
Similarly, the global translational order parameter is defined
by �12�

�T =
1

N
��

i=1

N

exp�iG · Ri�� . �7�

In Eq. �7�, G denotes a reciprocal lattice vector of the
triangular lattice and Ri is the position vector of the ith par-
ticle. A crude identification of the thermodynamically stable
phases that participate in the process of melting of a
quasi-2D metallic system can be deduced from the magni-
tudes of the calculated values of the GOOP and GTOP. For a
disordered liquid phase these values must be much less than
unity. In contrast, in a typical 2D solid one finds that 0
��6 and �T�1, with these values rapidly approaching
unity as the structure becomes progressively more ordered
and more nearly defect free. More insight can be gained from
an analysis of the correlation lengths associated with the
GOOP and GTOP. This information can be extracted from
the decays of the envelopes of the corresponding correlation
functions—namely, the bond orientation correlation function

g6�R� = 	
6
*�0�
6�R�� �8�

and the pair correlation function

g�R� =
2V

N�N − 1���
i=1

N

�
j�i

N

�R − Rij�� , �9�

where 	¯� refers to an ensemble average. In the above ex-
pressions, the vectors and distances in the arguments are the
projections of the 3D quantities onto the xy plane.

Additional information concerning the nature of a phase
can be obtained from an analysis of the diffraction pattern
associated with the particle configuration in that phase. We
have computed both the 2D static structure factor S�qxy� and
the angle-averaged static structure factor S�qxy�. The struc-
ture factor is defined by
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S�qxy� =
1

N��
i=1

N

�
j=1

N

exp�iqxy · �Ri − R j��� , �10�

where qxy is a 2D wave vector and Ri and R j are 2D projec-
tions of the position vectors of particles i and j onto the xy
plane. When averaged over angles, the above expression re-
duces to

S�qxy� = 1 +
2

N��
Rij

J0�qxyRij�� . �11�

In Eq. �11�, J0 designates the zeroth-order regular Bessel
function and the sum runs over all distinct pairs of particles.
Due to the small size of the simulation sample, we cannot
use Eq. �10� to capture the correct long-wavelength behavior
of the structure factor. Numerically, this would inevitably
result in spurious fluctuations of S�qxy� in the small qxy do-
main. Still, for the simulation samples we have studied, we
found that the positions and magnitudes of the first several
peaks in S�qxy� can be established with confidence.

A final word concerning the computational cost of our
procedure is in order. Because our pseudopotential is rela-
tively long ranged, the number of neighboring atoms that
interact with each atom is large, which makes the calculation
of the potential energy very expensive. In our simulations,
the average numbers of atoms that interact with a given atom
are 80 and 180 for the one-layer and two-layer models, re-
spectively. The two-layer simulation sample had 4820 atoms.
For this model the computational speed is 2.2 Monte Carlo
steps per second using a 1.6-GHz AMD Athlon MP proces-
sor. Close to the transition temperature runs of at least sev-
eral million Monte Carlo steps are needed to equilibrate the
system.

III. RESULTS

A. Pb monolayer

We discuss in this section the results obtained from simu-
lations of the Q2D Pb monolayer and from simulations of the
strictly 2D Pb monolayer. We use these results to examine

the effect of small-amplitude out-of-plane motion on the sta-
bility of the monolayer and the character of the melting tran-
sition. In this section we focus attention on the results ob-
tained with the NpT ensemble; we briefly report and discuss
the results obtained using the NVT ensemble in the Appen-
dix.

The average potential energy per particle in the Q2D Pb
monolayer obtained from the NpT ensemble simulations is
shown in Fig. 2. There is a discontinuous jump in the poten-
tial energy per atom at about 251 K that we associate with
the transition from the two-dimensional crystal to a less-
ordered phase. We will show below that the most likely value
for the transition temperature is between 251.70 and
251.75 K. The potential energy change across the transition
corresponds to an entropy change of 0.44kB. We display in
Fig. 3 the distribution of out-of-plane atomic amplitude for
several temperatures around the transition temperature. Fig-
ure 4 displays the standard deviation of the z distribution of
the monolayer. These z-amplitude distribution functions also
exhibit a discontinuous change in peak value between 251.70
and 251.75 K. The change in magnitude of the out-of-plane
motion amounts to about 40% of the peak value. The change

FIG. 2. The average potential energy per atom of a Q2D Pb
layer around the melting point.

FIG. 3. The out-of-plane distribution of a Q2D Pb layer around
the melting point.

FIG. 4. The standard deviation of the out-of-plane distribution
of a Q2D Pb layer around the melting point.
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in the two-dimensional density of the monolayer as the tran-
sition is traversed is shown in Fig. 5. The two-dimensional
density changes discontinuously, indicative of a first-order
transition. However, the increase in two-dimensional density
in the disordered phase is accompanied by a large increase in
amplitude of the out-of-plane motion of the Pb atoms, with
the consequence that the three-dimensional density of the Pb
layer is changed very little across the transition.

Figure 6 displays the global translational and bond orien-
tation order parameters for several temperatures close to the
transition temperature, which is between 251.70 and
251.75 K. Just above the transition temperature the Pb
monolayer appears to have only very slightly greater bond
orientation order than translational order. We infer that the
isolated monolayer of Pb does not support a hexatic phase
intermediate between the crystal and liquid phases. Our con-
clusion concerning the existence of a Q2D crystal-to-hexatic
transition in the Pb monolayer differs from that of Chek-
marev, Oxtoby, and Rice �4�. We will discuss the origin of
this difference later in this paper.

Figure 7 displays the pair correlation for several tempera-
tures close to the transition temperature, and Fig. 8 displays

the bond orientation correlation function for the same tem-
peratures. These correlation functions clearly show that at
250 K the Q2D Pb monolayer is crystalline and at 260 K it is
liquid.

It is our opinion that, given the limited size of simulation
samples, the best signature of hexatic ordering is the shape of
the diffraction peak in the calculated structure factor of the
Q2D system. Figures 9 and 10 display, respectively, calcula-
tions of S�qxy� as a function of qxy at several temperatures
and the powder diffraction pattern S�q�. We calculated S�q�
by Fourier inversion of the real-space pair correlation func-
tion g2�R�. Just above the phase transition temperature the
amplitude of the first diffraction peak is about 5, a value
rather close to that expected from the accurate empirical rule

FIG. 5. The two-dimensional density of a Q2D Pb layer around
the melting point.

FIG. 6. The order parameters of a Q2D Pb layer around the
melting point. Lines are shown to guide the eye. The translational
order parameters are shown in red.

FIG. 7. The pair correlation functions of a Q2D Pb layer around
the melting point.

FIG. 8. The orientation correlation functions of a Q2D Pb layer
around the melting point.

DONG XU LI AND STUART A. RICE PHYSICAL REVIEW E 72, 041506 �2005�

041506-6



that the liquid-to-solid phase transition occurs when the am-
plitude of the first peak of the liquid structure function is 5
�14,15�. Some azimuthal intensity patterns are shown in Fig.
11. We were unable to obtain a satisfactory fit of the angular
�azimuthal� variation of the intensity of the principal scatter-
ing peak obtained from the calculated S�q� to a square-root
Lorentzian �SRL� function �16�, the functional form that is a
diagnostic for diffraction from a hexatic phase. This obser-
vation is a critical component of our inference that the iso-

lated monolayer of Pb does not support a hexatic phase in-
termediate between the crystal and liquid phases.

As indicated earlier, we also carried out simulations of the
Q2D Pb monolayer in the NVT ensemble. The results ob-
tained are nearly identical with those obtained from simula-
tions in the NpT ensemble, except that fluctuations in the
former are larger than in the latter and the approach to equi-
librium in the former is slower than in the latter. We show in
Fig. 12, for comparison with the data displayed in Fig. 6, the
global translational and bond orientation order parameters
for several temperatures close to the transition temperature.
The major difference between these data sets is in the value
of the global bond orientation order parameter immediately
above the transition temperature; this value is larger in the
NVT simulations than in the NpT simulations, a difference
that we attribute to fluctuations in the finite sample.

FIG. 9. The two-dimensional scattering pattern S�qxy� of a Q2D
Pb layer. Higher intensity is shown by the lighter gray level.

FIG. 10. The powder scattering pattern S�q� of a Q2D Pb
layer.

FIG. 11. The azimuthal variation of the intensity of the principal
scattering peak of a Q2D Pb layer. Solid lines show model fitting. A
Gaussian model is used for the crystalline phase, and a square-root
Lorentzian �SRL� model is used for temperatures above the melting
point.

FIG. 12. The order parameters of a Q2D Pb layer, calculated in
the NVT ensemble. The simulation box contains 2016 atoms.
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We have also carried out extensive simulations of a
strictly 2D Pb monolayer, using two pseudopotentials. Spe-
cifically, we have carried out calculations both with the non-
local pseudopotential used by Zhao and Rice �3� and the
local pseudopotential used by Chekmarev, Oxtoby, and Rice
�4�. In both cases the lack of out-of-plane motion greatly
increases the transition temperature. We had difficulties in
equilibrating the 2D system around the transition point when
using the local pseudopotential used by Chekmarev, Oxtoby,
and Rice �4�. Figure 13 displays the order parameters of a
strictly 2D Pb monolayer, using the nonlocal pseudopoten-
tial. With this nonlocal pseudopotential, the transition be-
tween the ordered solid and the disordered high-temperature
phases appears to be a three-stage process. For temperatures
up 660 K, both translational and orientational order param-
eters imply that there is an ordered solid structure. Between
660 and 660.5 K, there is a small but clearly discontinuous
change of the translational order parameter, while no clear
change of the orientational order parameter is found across
this temperature range. A second first-order phase transition
occurs between 664 and 664.5 K, similar to the first transi-
tion, but different in that the orientational order parameter
also shows a weak discontinuous change accompanying the
sudden decrease of the translational order parameter. A third
transition occurs around 666.5 K, when the orientational or-
der parameter decreases abruptly; the change in the transla-
tional order parameter is small in magnitude around this tem-
perature. At higher temperatures, both order parameters
continue to decrease and eventually imply the formation of
an isotropic liquid. These data strongly support the view that
incorporation of the small-amplitude out-of-plane motion
that must be present in a real monolayer makes an important
contribution to the thermodynamic properties of that mono-
layer.

We found the convergence of simulations to be signifi-
cantly slower with the larger number of particles in the simu-
lation box. Because the order parameter changes at transi-
tions are smaller in magnitude than in the Q2D monolayer
case �see Fig. 6� and in the bilayer case �see Fig. 15 below�,
autocorrelation functions of the order parameters along the

Monte Carlo pseudotime evolution have been calculated to
show the speed of convergence. Figure 14 displays the
GOOP autocorrelation functions at several temperatures
within the transition temperature range. The autocorrelation
function of the GTOP is similar to that of the GOOP, due to
positive correlation between these two order parameters. The
central peak of the autocorrelation functions decays on a
Monte Carlo pass scale of about 4	105 steps, which is at
least 10 times smaller than the total simulation Monte Carlo
pass numbers we run within the transition temperature range.
The autocorrelation functions do show that there is slower
decay at longer time, but no obvious time constant can be
identified.

B. Ga-Pb bilayer

We now examine the properties of the quasi-two-
dimensional monolayer of Pb when it is in contact with a
Q2D monolayer of Ga. We use this two-layer model to assess
the effect of the Ga substrate on the Pb monolayer segregated
in the liquid-vapor interface of a dilute Pb in Ga alloy.

Our model captures correctly the experimental fact that
Q2D crystalline Pb can be supported on liquid Ga. We dis-
play in Fig. 15 the global orientation order parameter and the
translational order parameter for the PbGa two-layer system
as a function of temperature and in Figs. 16 and 17 the pair
correlation and bond orientation correlation functions for the
Pb and Ga layers in that system. Clearly, there is a transition
from a Q2D crystalline state to a disordered state in the Ga
layer at about 380 K, at which temperature the Pb layer re-
mains in a Q2D crystalline state. The Pb layer melts at
413 K. We note that just above 380 K the GOOP of the Ga
layer is about 0.6 and the GTOP of the Ga layer is about 0.3.
These values for the order parameters suggest that the phase
that is formed has hexatic structure. The further destruction
of order as the hexatic phase is heated from 381 to 400 K
appears to be a continuous process. At 400 K both the GOOP
and GTOP of the Ga layer have values that are typical for a
liquid phase.

FIG. 13. The order parameters of a 2D Pb layer, calculated in
the NpT ensemble with the EIMP pseudopotential �5–7�. The simu-
lation box contains 10 044 atoms. Lines are shown to guide the eye.

FIG. 14. The autocorrelation functions of the global orienta-
tional order parameter of a strictly 2D Pb layer. The average order
parameters are shown in Fig. 13. These three temperatures are cho-
sen to be slightly higher than the transition temperatures shown in
Fig. 13.
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The GOOP and GTOP temperature dependences shown in
Fig. 15 suggest that in the two-layer system the Q2D crys-
talline Pb layer undergoes three transitions en route to the
Q2D liquid phase. The first stage in the melting, between
412.0 and 412.5 K, involves discontinuous decreases in both
the GOOP and GTOP for the Pb layer. The higher-
temperature phase that is formed is stable from
412.5 to 415.0 K, and it has a hexatic structure. At a tem-
perature between 415.0 and 415.5 K there is another discon-
tinuous change in the GOOP and a small discontinuous
change in the GTOP. The higher-temperature phase that is
formed by this transition also has hexatic structure. The tem-
perature range over which this second hexatic phase is stable
is approximately 3 K, from about 415.5 to 418.5 K. Be-
tween 418.5 and 419.0 K there are weak discontinuous

jumps in both the GOOP and GTOP, and a more disordered
phase is formed. For temperatures above 423 K the Pb
monolayer is a Q2D liquid.

These inferences are supported by the results displayed in
Figs. 16 and 17. When the temperature is between 412.5 and
418.0 K the envelope of the bond orientation correlation
function of the Pb layer, g6�r�, decays algebraically. At
418.5 K, which is just below the third transition temperature
of the Pb layer, the algebraic decay is very close to r1/4

which, according to the Kosterlitz-Thouless-Halperin-
Nelson-Young �KTHNY� theory �17–21�, is the extreme
value possible for a hexatic phase. The decay of the bond
orientation correlation function is also close to algebraic in
form after the third transition of the Pb layer, between 418.5
and 419.0 K. The decay is close to exponential in form for
temperatures higher than 450 K. The transition from alge-
braic decay to exponential decay of the envelope of g6�r� is
smooth. We infer that the Pb layer of the bilayer is liquid
when the temperature exceeds 419 K even though the value
of the GOOP might be interpreted as characteristic of a
hexatic phase. To corroborate this inference we display, in
Fig. 18, S�qxy� for the Pb layer of the bilayer. Between 412.5
and 418.5 K, the structure function exhibits stretching of the
diffraction intensity in the azimuthal direction. The stretch-
ing of the diffraction spot in the azimuthal direction is
greater in the second hexatic phase, formed at higher tem-
perature, than in the lower-temperature hexatic phase. There
is further azimuthal stretching of the intensity just above
418.5–419.0 K, and this residue of bond orientation order is
consistent with the relatively high GOOP within this tem-
perature range. Noting that S�qxy� appears to be the superpo-
sition of weak diffraction peaks and a diffraction ring we
interpret the form of S�qxy� to arise from heterophase fluc-
tuations in the finite system we simulate. Figure 19 displays
the powder diffraction pattern of the Pb layer of the bilayer,
S�q�, calculated from the pair correlation function. The bond
orientation order and the translational order in the hexatic
phase are greater than in the liquid phase, and this is clearly
seen when the S�q� for 414 and 418 K are compared to that

FIG. 15. The order parameters of a PbGa bilayer, calculated in
the NpT ensemble with the EIMP pseudopotentials �5–7�. The
simulation box contains 4820 atoms. Lines are shown to guide the
eye.

FIG. 16. The Pb pair correlation functions of a PbGa bilayer.
Patterns are shown, respectively, for the crystalline, hexatic �I�,
hexatic �II�, and liquid phases.

FIG. 17. The Pb bond orientation correlation functions of a
PbGa bilayer. The dashed line shows the r1/4 pattern, which is pre-
dicted by the KTHNY theory as the extreme value possible for a
hexatic phase.
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for 450 K. Figure 20 displays the azimuthal variation of the
intensity of the principal scattering peak obtained from the
calculated S�q�. The differentiation between a liquid phase
and a hexatic phase is based on the square-root Lorentzian fit
to the shape of the diffraction peak for the latter �16�. The
diffraction peak at 410 K, at which temperature the Q2D
crystalline phase is stable, is well fitted with a Gaussian
function. The diffraction peaks at 414 and 417 K, at which
temperatures we argue there are two different hexatic phases,

are well fitted with square-root Lorentzian functions. The
difference between the two hexatic phases is manifested in
the widths of the azimuthal distributions of intensity of the
respective S�qxy�; that of the higher-temperature hexatic is
about 3 times greater than that of the lower-temperature
hexatic. As already noted, we interpret the very weak diffrac-
tion peak at 500 K, at which temperature the liquid phase is
stable, to be the consequence of heterophase fluctuations in
our finite system; the line shape is well fitted to a square-root
Lorentzian function.

We display in Fig. 21 the analog of Fig. 2—namely, the
average total potential energy as a function of temperature.
In Fig. 22 we show the average potential per particle as a
function of temperature for Pb and Ga atoms. When one
layer melts, the average potential of that layer increases,
while the average potential of the other layer decreases.
There is a much smaller change in the potential energy per

FIG. 18. The two-dimensional scattering pattern S�qxy� for the
Pb layer in a PbGa bilayer.

FIG. 19. The powder scattering pattern S�q� for the Pb layer in
a PbGa bilayer.

FIG. 20. The azimuthal variation of the intensity of the principal
scattering peak for the Pb layer in a PbGa bilayer.

FIG. 21. The total potential energy of a PbGa bilayer around the
Pb melting point.
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atom at the Pb layer transition temperature in the bilayer than
in the monolayer. Figure 23 displays the analog of Fig.
5—namely, the two-dimensional density as a function of
temperature. The two-dimensional density decreases with in-
creasing temperature throughout our simulation temperature
range. There is a small discontinuous density decrease at
each of the first order transitions that occur in the bilayer
system �one in the Ga layer and two in the Pb layer�. We

display in Fig. 24 the temperature dependences of the out-
of-plane amplitudes 	z

2�1/2 of the Pb and Ga atoms in the
bilayer. The distributions of atomic amplitudes are close to
Gaussian at all temperatures, but there is a noticeable devia-
tion from the Gaussian shape for displacements in the region
between the two layers. The amplitude of out-of-plane mo-
tion in each layer increases at the melting temperature of that
layer and seems to be insensitive to the transition that takes
place in the other layer. At temperatures other than the tran-
sition temperatures the standard deviation of the out-of-plane
amplitude distribution increases linearly with temperature.
There are small discontinuous changes in 	z

2� when the cor-
responding layer undergoes a first-order transition. The
change in amplitude of the out-of-plane motion when the
Q2D crystalline layer is completely transformed to a Q2D
liquid is 10% after correction for the linear dependence of
	z

2� on T. This change in 	z
2� at the transition is much

smaller than the 40% change found in the Q2D Pb mono-
layer simulations.

IV. DISCUSSION

A segregated monolayer of Pb supported on liquid Ga,
such as occurs in the liquid-vapor interface of a dilute Pb in
Ga alloy, is a complex many-body system. We have exam-
ined two simple models of this interface—namely, that it can
be treated as a Q2D monolayer or as a Q2D bilayer consist-
ing of weakly interacting Pb and Ga layers. The interactions
in the system have been determined using the pseudopoten-
tial representation of Zhao and Rice �3�. Although our model
is a drastic simplification of reality, we expect that when a
reasonable pseudopotential is used the qualitative features of
the in-plane structure of the liquid-vapor interface of this
alloy will be properly described.

The interpretation of the simulation data proffered in the
preceding section made extensive use of the conceptual
structure developed for the theory of melting of a two-
dimensional ordered solid. The validity of that interpretation
depends on establishing the accuracy with which the liquid-
vapor interface of a metal can be represented as a two-

FIG. 22. The potential energy of each layer in a PbGa bilayer.
The potential energy per particle is shown.

FIG. 23. The two-dimensional density of the Pb layer in a PbGa
bilayer around the Pb melting point.

FIG. 24. The temperature dependences of the out-of-plane am-
plitudes 	z

2�1/2 of the Pb and Ga atoms in the bilayer.
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dimensional system. It is immediately obvious that the
liquid-vapor interface of a metal is, at best, a quasi-two-
dimensional system. This categorization is intended to em-
phasize that the properties of the outermost layer of that in-
terface are affected both by out-of-plane motion of the atoms
of that layer and by contact with the substrate liquid. Our
simulations show that the interaction between an ordered Pb
monolayer and a liquid Ga monolayer lowers the melting
point of the former and changes the character of the phase
transition. The isolated Q2D monolayer of Pb does not sup-
port a hexatic phase intermediate between the crystal and
liquid phases, whereas the Q2D PbGa bilayer does. Our
simulations also show that the melting point of the Q2D Pb
monolayer is sensitive to the amplitude of out-of-plane mo-
tion.

Other work from this laboratory has established that a
liquid monolayer of a solute segregated in the liquid vapor
interface of an alloy, as occurs for dilute alloys of Sn in Ga
or Bi in Ga, has an effective surface tension very different
from �much greater than� the value obtained by extrapolation
of the pure solute liquid surface tension to the temperature of
observation. The difference between the measured and ex-
trapolated surface tensions is another signature of the impor-
tance of the interaction between the segregated monolayer
and the substrate. This conclusion follows from the form of
the Triezenberg-Zwanzig representation of the surface ten-
sion of the liquid-vapor interface �22�,

� =
kBT

4 �
��
� dz�� dz�� dR��

d��z��
dz�

d��z��
dz�

	C�R��,z�,z�;���,���� . �12�

In Eq. �12�, C�R�� ,z� ,z� ; ��� ,���� is the direct correla-
tion function in the liquid-vapor interface; it is a function of
the relative locations of atoms of species � and � and of the
densities of those species at the points. Equation �12� shows
that, at the same temperature, the difference between the sur-
face tensions of a pure liquid of species � and of the dilute
alloy of � in � with � segregated in the liquid-vapor inter-
face can only arise from differences between the longitudinal
density gradients and between the direct correlation func-
tions in the two liquid-vapor interfaces. These differences
must be accounted for over the entire domain that the longi-
tudinal density gradients are nonzero, which is typically
three to four atomic layers for a liquid metal. Just as the
qualitative difference between the structures of 2D and 3D
solids leads to the expectation that the mechanisms by which
these structures are brought about �crystallization� or de-
stroyed �melting� will differ substantially, we must expect
that the differences between quasi-2D and true 2D systems
will have some signature in the phase diagram and the melt-
ing process.

With these caveats in mind, we now examine what gen-
eral conclusions can be inferred from our calculations and
from the experimental observations concerning the in-plane
structure of the liquid-vapor interface of the dilute Pb in Ga
alloy. The simplest situation would arise if the only effect of
the substrate on the properties of the segregated monolayer
in the liquid-vapor interface were to change the values of

parameters that can be used in a 2D representation of it. The
most renowned theoretical framework for 2D melting, the
KTHNY formalism �17–20�, describes melting as a two-
stage process that proceeds via formation of an intermediate
hexatic phase. The first transition, which is driven by spon-
taneous unbinding of the dislocations pairs to produce a
“gas” of free dislocations, transforms the system from a solid
to a hexatic phase. The latter phase lacks translational order
but has quasi-long-range bond orientation order. In the fol-
lowing transformation dislocations dissociate further to form
free disclinations, converting the hexatic phase into a fully
disordered fluid. The KTHNY theory �17–20� predicts both
transitions to be continuous, albeit it does not stipulate this to
be the only possibility. As formulated, the KTHNY theory
can be applied to any system that can be approximated as a
continuous 2D elastic medium, regardless of the form of the
potential energy function. We remark here that the KTHNY
approach �17–20� to 2D melting identifies the transition with
the limit of mechanical stability of the solid. The theory does
not include any description of the liquid state and does not
address any possible difference between the limit of me-
chanical stability and the limit of thermodynamic stability;
the latter defines the melting point as the temperature and
pressure at which the chemical potentials of the solid and
liquid phases are equal. Our examination of the Q2D and 2D
single-layer models of Pb shows that the character of the
melting transition can be changed by out-of-plane motion of
the Pb atoms. When out-of-plane motion is allowed the melt-
ing transition is first order and direct; i.e., a hexatic phase
does not intervene between the solid and liquid phases.
When out-of-plane motion is prohibited the melting transi-
tion the transition between the ordered solid and the disor-
dered high-temperature phase appears to be continuous over
a small but nonzero temperature range �see Figs. 6 and 13�
and a hexatic phase does appear between the solid and liquid
phases. Our results differ from those reported by Chekmarev,
Oxtoby, and Rice �4�. An examination of their data shows
that the conclusion that Q2D Pb layer melts first to a hexatic
phase, then to a liquid phase, is based on very few points in
the temperature dependence of the GOOP and GTOP. Given
our experience that fluctuations near the melting temperature
are persistent in the NVT ensemble simulations and that
achievement of equilibrium in the transition region is very
slow in a 2000-atom Q2D simulation sample, we believe that
their simulations fell slightly short of achieving equilibrium.

It is worth noting that the effective atom-atom interaction
derived from the pseudopotential representation is long
ranged relative to the excluded volume interaction of hard
spheres or the van der Waals interaction in simple liquids.
Previously reported simulations of the mechanism of melting
in 2D systems with long-range pair interactions have gener-
ated a variety of results. For example, Terao and Nakayama
have reported the results of simulations of the behavior of a
2D assembly of charged colloidal particles at an air-water
interface �23�. The interaction they use accounts for the di-
electric properties of water, but the colloid motion is re-
stricted to be strictly two-dimensional. The results obtained
in these studies favor the KTHNY prediction of two-stage
melting with continuous phase transitions. The molecular dy-
namics studies of a 2D classical electron system, by Muto

DONG XU LI AND STUART A. RICE PHYSICAL REVIEW E 72, 041506 �2005�

041506-12



and Aoki, suggests that the hexatic phase may, in fact, inter-
vene between the stable solid and liquid phases, but no de-
finitive statement concerning the order of the observed tran-
sitions was put forward in this work �24�. It should be noted
that the use of a continuous rigid positive background to
achieve charge neutrality in the system forces the transition
to occur with zero change in density, a constraint that may
affect the character of the phase transition.

We consider now the character and distribution of defects
as the solid-to-liquid phase transition is traversed. As in our
previous work, we have followed the conventional procedure
of identifying defects via the Voronoi polygon mapping of
the atom spatial configuration. A defect is defined to be an

atom with other than six nearest neighbors; these are mapped
as Voronoi polygons with other than six sides. Sevenfold and
fivefold Voronoi polygons are classified as free disclinations.
A bound pair of sevenfold and fivefold defects is a disloca-
tion. At any nonzero temperature the Q2D solid has a small
concentration of bound pairs of dislocations �quartets of dis-
clinations�, but their presence does not disrupt the quasi-
long-range translational order. Just below the melting point
of the Q2D system there are also clusters of bound pairs of
dislocations. At any given temperature in the stable domain
of the Q2D solid, defects with different coordination
numbers—say, 4 and 8—have significantly smaller concen-
trations than the defects already mentioned. Consequently,
they are assumed to play a minor role in defining the melting
process. The concentrations of fivefold-coordinated and
sevenfold-coordinated atoms found in our Q2D simulation
sample, as a function of temperature, are shown in Fig. 25.
There is an obvious discontinuity in the concentrations of
these defects at the first-order melting transition. The con-
centration of the several species of defects and snapshots of
several defect distributions are shown in Figs. 26 and 27.

Turning now to the PbGa bilayer, we show in Figs.
28–30, respectively, the concentrations of fivefold- and
sevenfold-coordinated atoms, the composition of the defects
by species, and snapshots of several defect distributions at
different temperatures. Clearly, the rise in defect concentra-
tion with increasing temperature calculated in the bilayer
system is not as steep as in the monolayer system. The defect
concentration of the Pb layer of the bilayer shows steps at the

FIG. 25. The defect concentration in a Q2D Pb layer around its
melting point. The concentrations of fivefold-coordinated and
sevenfold-coordinated defects are almost identical, unless the tem-
perature is much higher than the melting point.

FIG. 26. The concentrations of the several species of defects of
a Q2D Pb layer around its melting point. The four-member �II�
notation means that three defects are neighbors to each other, while
the fourth defect is a neighbor to only one of them.

FIG. 27. Several sample configurations of a Q2D Pb layer.
Voronoi polygons are shown. Defects are labeled as colored poly-
gons; fivefold- and sevenfold-coordinated defects are shown as red
and green, respectively; fourfold- and eightfold-coordinated defects
are usually much lower in concentration and are labeled, respec-
tively, as yellow and blue.
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same temperatures that we identify with the Q2D crystal–to–
hexatic-I and the hexatic-I–to–hexatic-II transitions. Despite
the differences in the temperature profiles of the total defect
concentrations in the one-layer and two-layer systems and
the differences in the mechanism of melting, the composition
of the defect populations in the two systems is very similar
�compare Figs. 26 and 29�.

Well below the melting temperature, the defect structure
of the Q2D solid is consistent with the assumptions of the
KTHNY theory �17–20�. In this temperature regime defects
occur only in the form of tightly bound dislocation pairs and
are present at very small concentrations. However, there ap-
pear to be many types of crystal defects that participate in the

phase transition. At the melting transition temperature the
total defect concentration increases discontinuously, and
most defects are concentrated in clusters of various types.
The concentrations of free dislocations and dislocation pairs
are large, but the concentration of chains of dislocations is
not much less than that of dislocation pairs. The range
spanned by the concentrations of free disclinations and of
various connected groups of three and four dislocations is
less than a decade.

Overall, the results of our simulation studies establish that
the structures and the character of the phase transitions sup-
ported by a segregated monolayer in the liquid-vapor inter-
face of a dilute alloy have strong dependencies on both the
out-of-plane motion of the monolayer and its interactions
with the substrate. A realistic picture of the behavior of that
monolayer cannot be obtained from strictly two-dimensional
models.
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APPENDIX

In addition to the NpT ensemble simulations described in
the text we also carried out NVT ensemble simulations for
the same model systems. Indeed, we first chose to use the

FIG. 28. The defect concentration in a PbGa bilayer. For each
layer the concentrations of fivefold-coordinated and sevenfold-
coordinated defects are very close to each other.

FIG. 29. The concentrations of the several species of defects of
a PbGa bilayer around its melting point.

FIG. 30. Several sample configurations of a PbGa bilayer.
Voronoi polygons are shown. Defects are labeled as colored poly-
gons, in the same scheme as in Fig. 27. �a� shows a typical crystal-
line structure at a temperature just below the melting point; �b� and
�c� show typical configurations for the hexatic �I� and �II� phases,
respectively; �d� shows a typical liquid configuration.
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NVT ensemble because the experimental data indicate that
the change in density across the phase transition observed in
the Pb monolayer is very small or zero. Moreover, simula-
tions in the NVT ensemble are much faster than simulations
in the NpT ensemble because, in the latter, the neighbor list
used for computing interactions must be reconstructed after
an accepted surface area change. However, near the transi-
tion temperature we found it harder to equilibrate the system
in the NVT ensemble than in the NpT ensemble. Neverthe-
less, the results obtained from NVT ensemble simulations are
sensibly identical with those obtained from the NpT en-
semble simulations. It is illustrative to compare the results
from the NVT ensemble simulations with those from the NpT
ensemble simulations, which we do briefly in this appendix.

As in the text, we consider first the results obtained from
NVT ensemble simulations of the Pb monolayer. The order
parameters at temperatures around the transition point are
displayed in Fig. 12. The transition temperature is found to
be between 252.2 and 252.3 K. There are very dramatic
changes in both order parameters at the transition tempera-
ture, but these changes are not as apparently discontinuous as
found in NpT ensemble simulations. We attribute the differ-
ence to the fact that in the NVT ensemble, at temperatures
just above the transition temperature, the Pb monolayer fluc-
tuates between the ordered and disordered structures. Imme-
diately above the transition temperature the global orienta-
tion order parameter is greater than the global translational
order parameter. The GOOP then decays to be nearly equal
to the GTOP over a range of about 5 K. This is basically the
same behavior as was found in the NpT ensemble simula-
tions, but the residual magnitude of the GOOP immediately
after the transition is greater in the NVT ensemble. Figure 31
displays the concentrations of different defects in the Pb
monolayer as a function of temperature. Clearly, the behavior

illustrated in Fig. 30 resembles that shown in Fig. 26. These
results show that, despite the constant density constraint in
the NVT ensemble calculations, the melting mechanism is
the same in the NpT and NVT ensembles.

Consider, now, the NVT ensemble simulations of the
PbGa bilayer. The variations of the order parameters GOOP
and GTOP with temperature are displayed in Fig. 32. There
are dramatic changes in the GOOP and GTOP in a small
range of temperature, but these changes are less like a dis-
continuous change than the comparable changes displayed in
Fig. 15 for the NpT ensemble. We suggest that this disagree-
ment is an artifact arising from the large structural fluctua-
tions in the NVT ensemble near the transition temperature. In
turn, we expect that artifact to disappear as the simulation

FIG. 31. The concentrations of the several species of defects of
a Q2D Pb layer around its melting point, calculated in NVT
ensembles.

FIG. 32. The order parameters of a PbGa layer, calculated in
NVT ensembles. Lines are shown to guide the eye.

FIG. 33. The concentrations of the several species of defects of
a PbGa bilayer around its melting point, calculated in NVT
ensembles.
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sample size is increased. Finally, we display in Fig. 33 the
concentrations of various defects in the Pb monolayer.
Clearly the several defect concentrations depend on the tem-
perature in broadly the same way in both ensembles �see Fig.

29�. Just as was the case for the GOOP and GTOP tempera-
ture dependences, the changes in the vicinity of the transition
temperature are less abrupt in the NVT ensemble than in the
NpT ensemble.
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